
HGamer 3D
a toolset for developing games with haskell

Peter Althainz

HAL 2016, 14.9., Leipzig

Agenda
Part I – Intro

History

Shortcomings

New Approach

API Technology

Part II – What can I do with it ?

API Structure

Showcase Game
Demo & Features

Architecture

HGamer3D API examples

Feature Coverage of HGamer3D

Part I - History

History
Started with Irrlicht bindings – cumbersome

Then more serious with Ogre3D bindings

Got into trouble
 Spent months with API changes, GUI integration, shader libs

 Fragmented build process, not working on other computers

 No binary distribution

 No media tooling

 External C-libs are a nightmare for others to build

New Approach

New Approach – Fixed It
Integrated Engine: Urho3D
 All parts integrated, shaders as well, build tooling much better

 Media tooling available

Binary Components, Installer Technology
 Fixed distribution of programs, C-library problem

Coarse Grained API Strategy
 Fixes API stability issues

API Technology „Fresco“

Zero Install Tool – Arriccio (Go)
 Dependency injection and resolution
 Web download for your platform

Component Runtime – Intonaco (Rust)
 Lock free data-structures for thread abstraction
 Intermediate format: messagepack
 Entity-Component-System

Data Description Tool – Sinopia (Haskell)
 To describe ADT for interface language independent

Results

10 min to install in 5 easy steps:

 download aio for your platform
 aio Stack setup –resolver lts-5.8
 aio CreateProject
 ./build
 ./run

The same Haskell code on:
Windows / Linux / Mac !

Happy Customers!

Part II
What can I do with it ?

API One

Entities
 Composable from components
 Reference style
 CRUD within IO Monad
 Components are regular ADT‘s
 Reading & writing fully thread-safe
 One or more of components are kind-of

objects, the other attributes
 Creation with „newE“ and component list
 Attributes modify all objects in Entity
 Threading – behind the scenes

 All you need to know: Data Types

API Two
Only Data Types to memorize

API Three
Examples for Sound and Event Handling

API Four
Vector Arithmetics with Vect package from Balázs Kőműves
 Vector substraction, addition, scaling, rotation ...

 Quaternion arithmetics

 Examples:
 Rotation around an axis: „updateC eGeo ctOrientation (\u -> (rotU vec3Z 0.02) .*. u)“

 Implementation of yaw, roll, pitch:

Showcase Game
Features
 Sound, GUI, Key-Input

 Different game modes
 Intro Screen

 Flying / Playing

 Animated Invaders

 Fast Key-Input & Shooting

 Collision Detection by Haskell

Haskell – Game Architecture

Actors to partition code and use multi-threading scalable
Reader – State – Monad for Actor functions
Persistent data types, used a tree for all moving game elements
Traversable, to operate on tree
Collision detection, send messages of current state to detection actor
Not one big loop but multiple small ones, with confined state for each

Actors
https://www.youtube.com/watch?
v=VczbbiRmDik

Actors: looping function within
Reader-State-Monad

Structure of program

Slow
beat

Fast
beat

Screen
Actor:

Distributes
Events

based on
Mode

Move Actor:
Invader movement

Canon Actor:
Canon movement

Collision Actor:
Collision detection

Sound Actor

Status Actor

Flying Actor

Key
input

MAINActors are clearly separated pieces

 Create actors

 Wire them

 Start beat

 Send init msg

Screen ActorI
gameState is stored in state
monad

Big switch on gameState

Incoming messages are handled
depending on current gameState

In this actor they are just re-
distributed to next actors

Example: In pause mode keys are
not forwarded, other keys are valid

State Machine for mode handling

Screen Actor II

Depending on mode, messages are

distributed

to next

actor
There are two beats, a fast and a
slow cycle beat

During gameplay canon movement
and collision detection are done
more often then movement of
invaders

Cube I

Cube II

...

Data Structure (Persistent)

Root

Invader
Row

Invader I

Invader II

Cube I

Cube II

...

 Tree structure to be flexible
 Sub-elements move with parent
 Each element is an Hmap
 More: canon, shot, ...

Pixel A
Pixel B

properties:
Position
HG3D Entity
...

properties:
Position
Animation
...

Animation - Traverse over tree

Collision Detection I

Collision Detection II

Program
Structure

modular by actors

 fully multi-threaded

 simple tree data structure

 HMap for properties

 beginner/intermediate Haskell

 API enables this kind of structure

Combines persistent data structure
with threading, still being modular

No complex Haskell magic needed,
uses the basics of FP

fully benefits from
Haskell, still
beginner friendly
style

Feature Coverage of HGamer3D
very basic feature coverage:
 3d geometry, GUI, sound, device input, light, material
 wish-list: particles, effects, animation, network, physics, ...
 targeting today: education, fun programming, ...

included:
 easy to use
 beginner friendly API
 fully multi-threading capable

Outlook
let future = fmap (createNewVersions .

addFeatures .

evolveGame) (Maybe neededTime)

www.hgamer3d.org

Thank You For Your Time!

