4
N

Dependently Typed Heaps

https://github.com/brunjlar/heap



About Me

Lars Briinjes (PhD)
(Pure) Mathematician, Lead Software Architect
based in Regensburg, Germany

Email: brunjlar@gmail.com

Github: https://github.com/brunjlar



mailto:brunjlar@gmail.com
https://github.com/brunjlar

Agenda

Motivation

Leftist Heaps
- Proving Theorems in Haskell
- Dependently Typed Heaps

- Reflection on Results

Questions & Comments



Motivation



Motivation

- Types help catching errors at compile time.

- Some invariants cannot be expressed by “simple” types.

- Haskell steadily moves towards dependent types.

- | wanted to see whether it is possible to prove theorems in Haskell...

- ...and use this to encode some non-trivial invariants.

Heaps seem to be a good example.



L eftist Heaps



Heap

We consider binary trees whose nodes carry some payload and a priority (a
natural number):

data Tree a = Empty | Node Natural a (Tree a) (Tree a)

Such a tree is a heap if it satisfies the heap property: The priority of a node is not
bigger than the priority of any of its children.

(So in a non-empty heap, the root has minimal priority.)




Heap

This is a heap. This is not a heap.




Rank

The rank of a heap is the length of its right spine.

Rank 2 Rank 3



L eftist Heap

A heap is leftist if in each node, the rank of the left child is not smaller than the rank of the right child.

leftist not leftist



Merging Leftist Heaps

INatural a (Heap a)

priority :
pricority Emg
pricrity

singleton ::
singleton p x

merge
merdge
merge
merge
[

| otherwise

et h''@ (Nod:s

£

in At




Weakly typed heaps

- Neither heap property nor leftist property are enforced by the compiler.

- “Classical solution”. smart constructors, but those only catch errors at
runtime.

- Algorithms like “merge” can easily be done wrong.

- Can we define leftist heaps in such a way that the compiler prevents us from
constructing “illegal” heaps?




4
N

Proving Theorems in Haskell



Technical Tools

data Dict :: Constraint -= * where

Values of type Dict p capture a dictionary for a constraint of type p.

- Constraints to express statements eg.

Dict :: Dict (Eq Int)

_ relfled Statements (dlctlonarieS) /capturesadictionarythatpmves we have an:

instance Egq 'Int

(See “ConStralntS" Iibrary by Kmett Pattern matching on the Dict constructor will bring this instance into scope.
On HaCkage) Constructors
Dict :: a == Dict a

- Singleton Types (see “singletons” library by Eisenberg & Stolarek on Hackage)




A Simple Example




4
N

Dependently Typed Heaps



Dependently Typed Heaps




Type-Safe Merg

merge

merge

merge

merge
alternative

(ltGegDec
(minsSymm p

T
using (minProd' p (priority
alternative (leqGtDec r




4
N

Reflection on Results



Benchmark

Peano
Peano/250
Bin
Peano/500 Il Unchecked

Peano/750
Peano/1000
Peano/1250
Peano/1500
Peano/1750
Peano/2000
Peano/2250
Peano/2500

Bin/250

Bin/500

Bin/750
Bin/1000
Bin/1250
Bin/1500
Bin/1750
Bin/2000
Bin/2250
Bin/2500

Unchecked/

Unchecked/300

Unchecked/750
Unchecked/1000
Unchecked/1250
Unchecked/1500
Unchecked/1730
Unchecked/2000
Unchecked/2250

Unchecked/2500

OO T

o
=
=)
o
=3
w
=)
X
=1
=1
&l
o
=1
w
o
o
w
o
=1
-
o
=3
-
o
=1
w
=1
=1
o
o
o



Type Safety

- Haskell's type system is powerful enough to encode non-trivial invariants on
the type-level.

- Haskell functions can serve as “proofs” for statements about types.

- Caution: Compiler gives no termination guarantee, so would accept a
non-terminating proof.




4
N

Questions & Comments



