
Dependently Typed Heaps
https://github.com/brunjlar/heap

About Me

Lars Brünjes (PhD)

(Pure) Mathematician, Lead Software Architect

based in Regensburg, Germany

Email: brunjlar@gmail.com

Github: https://github.com/brunjlar

mailto:brunjlar@gmail.com
https://github.com/brunjlar

Agenda
- Motivation

- Leftist Heaps

- Proving Theorems in Haskell

- Dependently Typed Heaps

- Reflection on Results

- Questions & Comments

Motivation

Motivation
- Types help catching errors at compile time.

- Some invariants cannot be expressed by “simple” types.

- Haskell steadily moves towards dependent types.

- I wanted to see whether it is possible to prove theorems in Haskell...

- ...and use this to encode some non-trivial invariants.

- Heaps seem to be a good example.

Leftist Heaps

Heap

We consider binary trees whose nodes carry some payload and a priority (a
natural number):

data Tree a = Empty | Node Natural a (Tree a) (Tree a)

Such a tree is a heap if it satisfies the heap property: The priority of a node is not
bigger than the priority of any of its children.

(So in a non-empty heap, the root has minimal priority.)

Heap

 2

 2 3 3 6

 4

 6 4 7

This is a heap. This is not a heap.

Heap property
violated!

Rank
The rank of a heap is the length of its right spine.

 2

 2 3

 6 4

 2

 2 3

 6 4

Rank 2 Rank 3

Leftist Heap
A heap is leftist if in each node, the rank of the left child is not smaller than the rank of the right child.

 2
rk 2

 2
rk 1

 3
rk 1

 6
rk 1

 4
rk 1

 2
rk 3

 2
rk 2

 3
rk 2

 6
rk 1

 4
rk 1

leftist not leftist

Leftist
property
violated!

 8
rk 1

Merging Leftist Heaps

Weakly typed heaps

- Neither heap property nor leftist property are enforced by the compiler.

- “Classical solution”: smart constructors, but those only catch errors at
runtime.

- Algorithms like “merge” can easily be done wrong.

- Can we define leftist heaps in such a way that the compiler prevents us from
constructing “illegal” heaps?

Proving Theorems in Haskell

Technical Tools

- Constraints to express statements

- reified statements (dictionaries)
(see “constraints” library by Kmett
on Hackage)

- Singleton Types (see “singletons” library by Eisenberg & Stolarek on Hackage)

A Simple Example

Dependently Typed Heaps

Dependently Typed Heaps

Type-Safe Merging

Reflection on Results

Benchmark

Type Safety

- Haskell’s type system is powerful enough to encode non-trivial invariants on
the type-level.

- Haskell functions can serve as “proofs” for statements about types.

- Caution: Compiler gives no termination guarantee, so would accept a
non-terminating proof.

Questions & Comments

