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Dependently Typed Heaps

https://github.com/brunjlar/heap
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Motivation

- Types help catching errors at compile time.

- Some invariants cannot be expressed by “simple” types.

- Haskell steadily moves towards dependent types.

- | wanted to see whether it is possible to prove theorems in Haskell...

- ...and use this to encode some non-trivial invariants.

Heaps seem to be a good example.



L eftist Heaps



Heap

We consider binary trees whose nodes carry some payload and a priority (a
natural number):

data Tree a = Empty | Node Natural a (Tree a) (Tree a)

Such a tree is a heap if it satisfies the heap property: The priority of a node is not
bigger than the priority of any of its children.

(So in a non-empty heap, the root has minimal priority.)




Heap

This is a heap. This is not a heap.




Rank

The rank of a heap is the length of its right spine.

Rank 2 Rank 3



L eftist Heap

A heap is leftist if in each node, the rank of the left child is not smaller than the rank of the right child.

leftist not leftist



Merging Leftist Heaps
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Weakly typed heaps

- Neither heap property nor leftist property are enforced by the compiler.

- “Classical solution”. smart constructors, but those only catch errors at
runtime.

- Algorithms like “merge” can easily be done wrong.

- Can we define leftist heaps in such a way that the compiler prevents us from
constructing “illegal” heaps?
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Proving Theorems in Haskell



Technical Tools

data Dict :: Constraint -= * where

Values of type Dict p capture a dictionary for a constraint of type p.

- Constraints to express statements eg.

Dict :: Dict (Eq Int)

_ relfled Statements (dlctlonarieS) /capturesadictionarythatpmves we have an:

instance Egq 'Int

(See “ConStralntS" Iibrary by Kmett Pattern matching on the Dict constructor will bring this instance into scope.
On HaCkage) Constructors
Dict :: a == Dict a

- Singleton Types (see “singletons” library by Eisenberg & Stolarek on Hackage)




A Simple Example
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Dependently Typed Heaps



Dependently Typed Heaps




Type-Safe Merg
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Reflection on Results



Benchmark
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Type Safety

- Haskell's type system is powerful enough to encode non-trivial invariants on
the type-level.

- Haskell functions can serve as “proofs” for statements about types.

- Caution: Compiler gives no termination guarantee, so would accept a
non-terminating proof.
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Questions & Comments



