Random-access lists, nested data types and numeral systems

Balázs Kőműves

Falkstenen AB

Leipzig, 2016 September 14

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Singly linked lists

Lists are the functional programmer's favourite¹ data structure.

- very simple
- persistent
- ► O(1) cons
- BUT, O(k) access to the k-th element :(
- ▶ O(n) length
- 3 extra words per element (with GHC)
- etc...

Random access lists

We can do better:

- still relatively simple implementation
- ▶ average / amortized / worst-case² O(1) cons
- $O(\log(k))$ access to the k-th element
- ▶ $O(\log(n))$ length
- possibly more compact in-memory representation

etc...

So we can achieve a strictly better list-replacement! (modulo constant factors, of course)

²depending on implementation details

Credits

No originality is claimed here.

Credits / History:

- (Skip lists: William Pugh, 1990)
- Purely Functional Random-Access Lists: Chris Okasaki, 1995
- (Skip trees: Xavier Messeguer, 1997)
- ► Finger trees: Ralf Hinze and Ross Paterson, 2006
- The nested data type trick I learned from Péter Diviánszky

Implementation:

http://hackage.haskell.org/package/nested-sequence

Lists in memory

This is how a list is represented in the computer (using GHC):

[3,4,5] :: [Int]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Leaf binary random-access lists

Consider a list of length 13. Decimal 13 is in binary 1 1 0 1, as 13 = 8 + 4 + 1. The idea is that will group the elements of the list according to digits of the binary expansion:

$$\left[\begin{array}{c|c} a_1 \\ 1 \\ 1 \\ \end{array}\right| \left[\begin{array}{c|c} \Box \\ \Box \\ \Box \\ \end{array}\right] \left[\begin{array}{c|c} a_2 \\ a_3 \\ a_4 \\ a_5 \\ 4 \\ \end{array}\right] \left[\begin{array}{c|c} a_6 \\ a_7 \\ a_8 \\ a_9 \\ a_{10} \\ a_{11} \\ a_{12} \\ a_{13} \\ a_{13} \\ \end{array}\right]$$

And then store the corresponding elements in complete binary trees. So the data structure is basically a list of larger and larger binary trees, with data stored on the leaves:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Leaf binary random-access lists, II

Dictionary

Set	container		
\mathbb{N}	sequence type List a		
increment	cons		
decrement	tail		
addition	append		
linked list	unary number system		
random-access list	(skew) binary number system		

Classic vs. nested binary trees

```
The usual binary tree<sup>3</sup> definition in Haskell:
data Tree a = Leaf a
| Node (Tree a) (Tree a)
```

Issues:

- minor: Cannot guarantee the shape (we want *complete* binary trees here)
- major: There is an extra indirection at the leaves. This costs *two extra words* per element! (that's 16 bytes on a 64-bit machine)

Ugly solution for the latter:

```
data Ugly a = Singleton a
| Cherry a a
| Node (Ugly a) (Ugly a)
```

Naive binary trees

 $3\cdot(2^d-1)+2\cdot 2^d$ words for $n=2^d$ elements, that is, 5 words per element, even worse than lists!

Nested complete binary trees

We can encode complete binary trees also as a *nested data type*:

Memory footprint:

$$3(n-1) + 2\log(n) + 2$$
 words

Nested leaf binary random-access lists

Random access-lists of length 4, 5, 6 and 7

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Basic operations

```
data Seq a = Nil
           | Even (Seq (a,a))
           | Odd a (Seq (a,a))
cons :: a -> Seq a -> Seq a
cons x seq = case seq of
                              cons :: (a,a) \rightarrow Seq (a,a) \rightarrow Seq (a,a)
  Nil -> Odd x Nil
  Even ys -> Odd x ys
  Odd y ys -> Even $ cons (x,y) ys
lookup :: Int -> Seq a -> a
lookup !k seq =
  case seq of
    Even ys -> cont k ys
    Odd y ys \rightarrow if k==0 then y else cont (k-1) ys
  where
    cont k xs = if even k then x else y where
      (x,y) = lookup (div k 2) xs
```

Running time analysis

Both cons and lookup are clearly worst-case $O(\log(n))$.

However, in practice they are much better!

Consider the *average* running time of cons. Half of the cases the list will have even length \rightarrow we stop after 1 step. Half of the remaining cases will have a length of the form $4n + 1 \rightarrow$ we stop after 2 steps. Half of the remaining cases will have a length 8n + 3...

avg. cons time =
$$\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \dots < \sum_{i=1}^{\infty} \frac{i}{2^i} = 2$$

lookup k should be on average $O(\log(k))$

(What about amortized running time? Tricky to analyse in the lazy purely functional setting, I *think* the same results may be also true for amortized cost...)

Nested leaf *n*-ary random-access lists

For the n-ary version, we proceed exactly the same way. Consider for example the quaternary (n = 4) version:

```
data Seq4 a
 = Nil
 | Zero (Seq (a,a,a,a)) -- digit 0
 | One a (Seq (a,a,a,a)) -- digit 1
 | Two a a (Seq (a,a,a,a)) -- digit 2
 | Three a a a (Seq (a,a,a,a)) -- digit 3
cons :: a -> Seq4 a -> Seq4 a
cons x seq = case seq of
 Nil
                -> One x Nil
 Zero rest -> One x rest
 One a rest -> Two x a rest
 Two a b rest -> Three x a b rest
 Three a b c rest -> Zero $ cons (x,a,b,c) rest
```

Skew number systems

In the skew *n*-ary number system, we allow one more digit apart from $0, 1, \ldots, n-1$. We will call this digit *n*. However, it is allowed to appear at most once, and it must be the first (least significant) non-zero digit.

Example (skew-binary): 1 0 0 1 0 1 1 <u>2</u> 0 0 0 0

Incrementation algorithm:

- if there is an n digit, set it to zero and increment the next digit
- otherwise just increment the least significant digit

At most one carry operation! \rightarrow possible to implement in constant time \rightarrow \rightarrow this translates to *worst-case* O(1) cons.

Skew *n*-ary random-access lists

How many skew numbers are with (at most) k digits?

$$f(k) :=$$
 number of k-digit skew n-ary numbers $f(k) = n \cdot f(k-1) + 1 = \sum_{i=0}^{k} n^{k}$

It follows (convince yourself) that:

$$[a_k \ a_{k-1} \ \dots \ a_1 \ a_0] \longrightarrow \sum_{i=0}^k a_k \cdot f(k) \in \mathbb{N}$$

Observation: f(k) equals to the number of "full" (data on both the nodes and the leaves) *n*-ary trees with depth k!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus we will store data on both the nodes and the leaves. It's magic!

Skew *n*-ary random-access lists, II.

Observation: f(k) equals to the number of "full" (data on both the nodes and the leaves) *n*-ary trees with depth k!

Thus we will store data on *both* the nodes and the leaves (this also reduces memory consumption, by the way):

Problem: for a truly O(1) cons implementation, we have to "jump over" the zero digits. For *nested* trees, this becomes somewhat tricky. Should be easy with dependent types, but how to convince GHC to accept our program?

Memory footprint

Comparison of the (average) memory footprint (with GHC) of some similar data structures, in extra words per element:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Data.List	3
Data.RandomAccessList	3
Data.Sequence	2.5
Data.Vector	1

Random-access lists:

	leaf		skew	
	naive	clever	naive	clever
binary	5	3	3	2
ternary	4	2	3	1.666
quaternary	3.666	1.666	3	1.5
$n \to \infty$	3	1	3	1
n-ary	$2 + \frac{n+1}{n-1}$	$\frac{n+1}{n-1}$	3	$\frac{n+2}{n}$

Speed comparison

Libraries compared: Data.Sequence (finger tree), Data.RandomAccessList, and nested leaf- binary/ternary/quaternary

Lookup & cons:

Update:

