
Random-access lists, nested data types and
numeral systems

Balázs Kőműves

Falkstenen AB

Leipzig, 2016 September 14

Singly linked lists

Lists are the functional programmer’s favourite1 data structure.

I very simple

I persistent

I O(1) cons

I BUT, O(k) access to the k-th element :(

I O(n) length

I 3 extra words per element (with GHC)

I etc...

1maybe debatable :)

Random access lists

We can do better:

I still relatively simple implementation

I average / amortized / worst-case2 O(1) cons

I O(log(k)) access to the k-th element

I O(log(n)) length

I possibly more compact in-memory representation

I etc...

So we can achieve a strictly better list-replacement! (modulo
constant factors, of course)

2depending on implementation details

Credits

No originality is claimed here.

Credits / History:

I (Skip lists: William Pugh, 1990)

I Purely Functional Random-Access Lists: Chris Okasaki, 1995

I (Skip trees: Xavier Messeguer, 1997)

I Finger trees: Ralf Hinze and Ross Paterson, 2006

I The nested data type trick I learned from Péter Diviánszky

Implementation:

http://hackage.haskell.org/package/nested-sequence

Lists in memory

This is how a list is represented in the computer (using GHC):

[3,4,5] :: [Int]

Leaf binary random-access lists

Consider a list of length 13. Decimal 13 is in binary 1 1 0 1, as 13 = 8 + 4 + 1.
The idea is that will group the elements of the list according to digits of the
binary expansion:

[a1︸︷︷︸
1

| � �︸ ︷︷ ︸
(2)

| a2 a3 a4 a5︸ ︷︷ ︸
4

| a6 a7 a8 a9 a10 a11 a12 a13︸ ︷︷ ︸
8

]

And then store the corresponding elements in complete binary trees. So the
data structure is basically a list of larger and larger binary trees, with data
stored on the leaves:

[a1 � � a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13]

Leaf binary random-access lists, II

data BinTree a = Leaf a

| Node (BinTree a) (BinTree a)

type RAL a = [Maybe (BinTree a)]

cons :: a -> RAL a -> RAL a

cons x = go (Leaf x) where

go s [] = [Just s]

go s (mb:rest) = case mb of

Nothing -> Just s : rest -- no carry

Just t -> Nothing : go (Node s t) rest -- carry

Dictionary

Set container

N sequence type List a

increment cons

decrement tail

addition append

linked list unary number system
random-access list (skew) binary number system

Classic vs. nested binary trees

The usual binary tree3 definition in Haskell:

data Tree a = Leaf a

| Node (Tree a) (Tree a)

Issues:

I minor: Cannot guarantee the shape
(we want complete binary trees here)

I major: There is an extra indirection at the leaves.
This costs two extra words per element!
(that’s 16 bytes on a 64-bit machine)

Ugly solution for the latter:

data Ugly a = Singleton a

| Cherry a a

| Node (Ugly a) (Ugly a)

3with data only on the leaves

Naive binary trees

3 · (2d − 1) + 2 · 2d words for n = 2d elements, that is, 5 words per
element, even worse than lists!

Nested complete binary trees

We can encode complete binary trees also as a nested data type:

data Tree’ a

= Single a

| Double (Tree’ (a,a))

example = Double

$ Double

$ Single ((3,4),(5,6))

Memory footprint:

3(n− 1) + 2 log(n) + 2 words

Nested leaf binary random-access lists

data Seq a = Nil

| Even (Seq (a,a))

| Odd a (Seq (a,a))

Random access-lists of length 4, 5, 6 and 7

Basic operations

data Seq a = Nil

| Even (Seq (a,a))

| Odd a (Seq (a,a))

cons :: a -> Seq a -> Seq a

cons x seq = case seq of

Nil -> Odd x Nil

Even ys -> Odd x ys

Odd y ys -> Even $ cons (x,y) ys

lookup :: Int -> Seq a -> a

lookup !k seq =

case seq of

Even ys -> cont k ys

Odd y ys -> if k==0 then y else cont (k-1) ys

where

cont k xs = if even k then x else y where

(x,y) = lookup (div k 2) xs

cons :: (a,a) -> Seq (a,a) -> Seq (a,a)

Running time analysis

Both cons and lookup are clearly worst-case O(log(n)).

However, in practice they are much better!

Consider the average running time of cons. Half of the cases the
list will have even length → we stop after 1 step. Half of the
remaining cases will have a length of the form 4n+ 1 → we stop
after 2 steps. Half of the remaining cases will have a length
8n+ 3...

avg. cons time =
1

2
· 1 + 1

4
· 2 + 1

8
· 3 + . . . <

∞∑
i=1

i

2i
= 2

lookup k should be on average O(log(k))

(What about amortized running time? Tricky to analyse in the lazy purely

functional setting, I think the same results may be also true for amortized

cost...)

Nested leaf n-ary random-access lists

For the n-ary version, we proceed exactly the same way. Consider for
example the quaternary (n = 4) version:

data Seq4 a

= Nil

| Zero (Seq (a,a,a,a)) -- digit 0

| One a (Seq (a,a,a,a)) -- digit 1

| Two a a (Seq (a,a,a,a)) -- digit 2

| Three a a a (Seq (a,a,a,a)) -- digit 3

cons :: a -> Seq4 a -> Seq4 a

cons x seq = case seq of

Nil -> One x Nil

Zero rest -> One x rest

One a rest -> Two x a rest

Two a b rest -> Three x a b rest

Three a b c rest -> Zero $ cons (x,a,b,c) rest

Skew number systems

In the skew n-ary number system, we allow one more digit apart from
0, 1, . . . , n− 1. We will call this digit n. However, it is allowed to appear at
most once, and it must be the first (least significant) non-zero digit.

Example (skew-binary): 1 0 0 1 0 1 1 2 0 0 0 0

Incrementation algorithm:

I if there is an n digit, set it to zero and increment the next digit

I otherwise just increment the least significant digit

At most one carry operation! → possible to implement in constant time →
→ this translates to worst-case O(1) cons.

Skew n-ary random-access lists

How many skew numbers are with (at most) k digits?

f(k) := number of k-digit skew n-ary numbers

f(k) = n · f(k − 1) + 1 =
k∑

i=0

nk

It follows (convince yourself) that:

[ak ak−1 . . . a1 a0] 7−→
k∑

i=0

ak · f(k) ∈ N

Observation: f(k) equals to the number of “full” (data on both the nodes and
the leaves) n-ary trees with depth k!

Thus we will store data on both the nodes and the leaves. It’s magic!

Skew n-ary random-access lists, II.
Observation: f(k) equals to the number of “full” (data on both the nodes and
the leaves) n-ary trees with depth k!

Thus we will store data on both the nodes and the leaves (this also reduces
memory consumption, by the way):

1 + 1 + 1 + 1 = 4

4 + 4 + 4 + 1 = 13

13 + 13 + 13 + 1 = 40

Problem: for a truly O(1) cons implementation, we have to “jump over” the zero

digits. For nested trees, this becomes somewhat tricky. Should be easy with

dependent types, but how to convince GHC to accept our program?

Memory footprint

Comparison of the (average) memory footprint (with GHC) of some
similar data structures, in extra words per element:

Data.List 3
Data.RandomAccessList 3
Data.Sequence 2.5
Data.Vector 1

Random-access lists:

leaf skew
naive clever naive clever

binary 5 3 3 2
ternary 4 2 3 1.666
quaternary 3.666 1.666 3 1.5
n→∞ 3 1 3 1
n-ary 2 + n+1

n−1
n+1
n−1 3 n+2

n

Speed comparison
Libraries compared: Data.Sequence (finger tree), Data.RandomAccessList,

and nested leaf- binary/ternary/quaternary

Lookup & cons:

Update:

