Random-access lists, nested data types and numeral systems

Balázs Kőműves

Falkstenen AB

Leipzig, 2016 September 14
Singly linked lists

Lists are the functional programmer’s favourite\(^1\) data structure.

- very simple
- *persistent*
- \(O(1)\) \texttt{cons}
- BUT, \(O(k)\) access to the \(k\)-th element :(
- \(O(n)\) length
- 3 extra words per element (with GHC)
- etc...

\(^1\)maybe debatable :)

Random access lists

We can do better:

- still relatively simple implementation
- average / amortized / worst-case\(^2\) \(O(1)\) cons
- \(O(\log(k))\) access to the \(k\)-th element
- \(O(\log(n))\) length
- possibly more compact in-memory representation
- etc...

So we can achieve a strictly better list-replacement! (modulo constant factors, of course)

\(^2\)depending on implementation details
Credits

No originality is claimed here.

Credits / History:
- (Skip lists: William Pugh, 1990)
- Purely Functional Random-Access Lists: Chris Okasaki, 1995
- (Skip trees: Xavier Messeguer, 1997)
- Finger trees: Ralf Hinze and Ross Paterson, 2006
- The nested data type trick I learned from Péter Diviánszky

Implementation:

http://hackage.haskell.org/package/nested-sequence
Lists in memory

This is how a list is represented in the computer (using GHC):

\[[3, 4, 5] :: [\text{Int}] \]
Leaf binary random-access lists

Consider a list of length 13. Decimal 13 is in binary 1 1 0 1, as $13 = 8 + 4 + 1$. The idea is that will group the elements of the list according to digits of the binary expansion:

$$
\begin{array}{cccccccc}
 & a_1 & & & & & & \\
1 & 1 & & & & & & \\
\end{array}
\begin{array}{cccc}
 & a_2 & a_3 & a_4 & a_5 \\
2 & 4 & & & & & & \\
\end{array}
\begin{array}{ccccccc}
 & a_6 & a_7 & a_8 & a_9 & a_{10} & a_{11} & a_{12} & a_{13} \\
8 & & & & & & & & \\
\end{array}
$$

And then store the corresponding elements in complete binary trees. So the data structure is basically a list of larger and larger binary trees, with data stored on the leaves:
data BinTree a = Leaf a
 | Node (BinTree a) (BinTree a)

type RAL a = [Maybe (BinTree a)]

cons :: a -> RAL a -> RAL a
cons x = go (Leaf x) where
 go s [] = [Just s]
 go s (mb:rest) = case mb of
 Nothing -> Just s : rest -- no carry
 Just t -> Nothing : go (Node s t) rest -- carry
Dictionary

<table>
<thead>
<tr>
<th>Set</th>
<th>container</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N})</td>
<td>sequence type of (\text{List a})</td>
</tr>
<tr>
<td>increment</td>
<td>cons</td>
</tr>
<tr>
<td>decrement</td>
<td>tail</td>
</tr>
<tr>
<td>addition</td>
<td>append</td>
</tr>
<tr>
<td>linked list</td>
<td>unary number system</td>
</tr>
<tr>
<td>random-access list</td>
<td>(skew) binary number system</td>
</tr>
</tbody>
</table>
Classic vs. nested binary trees

The usual binary tree\(^3\) definition in Haskell:

```haskell
data Tree a = Leaf a
            | Node (Tree a) (Tree a)
```

Issues:

- **minor**: Cannot guarantee the shape
 (we want *complete* binary trees here)
- **major**: There is an extra indirection at the leaves.
 This costs *two extra words* per element!
 (that’s 16 bytes on a 64-bit machine)

Ugly solution for the latter:

```haskell
data Ugly a = Singleton a
            | Cherry a a
            | Node (Ugly a) (Ugly a)
```

\(^3\)with data only on the leaves
Naive binary trees

\[3 \cdot (2^d - 1) + 2 \cdot 2^d \] words for \(n = 2^d \) elements, that is, 5 words per element, even worse than lists!
Nested complete binary trees

We can encode complete binary trees also as a nested data type:

```haskell
data Tree' a
    = Single a
    | Double (Tree' (a,a))

example = Double
    $ Double
    $ Single ((3,4),(5,6))
```

Memory footprint:

$$3(n - 1) + 2 \log(n) + 2 \text{ words}$$
Nested leaf binary random-access lists

data Seq a = Nil
 | Even (Seq (a,a))
 | Odd a (Seq (a,a))

Random access-lists of length 4, 5, 6 and 7
Basic operations

data Seq a = Nil
 | Even (Seq (a,a))
 | Odd a (Seq (a,a))

cons :: a -> Seq a -> Seq a
cons x seq = case seq of
 Nil -> Odd x Nil
 Even ys -> Odd x ys
 Odd y ys -> Even $ cons (x,y) ys

lookup :: Int -> Seq a -> a
lookup !k seq =
 case seq of
 Even ys -> cont k ys
 Odd y ys -> if k==0 then y else cont (k-1) ys

where
 cont k xs = if even k then x else y where
 (x,y) = lookup (div k 2) xs
Running time analysis

Both \texttt{cons} and \texttt{lookup} are clearly worst-case $O(\log(n))$.

However, in practice they are much better!

Consider the average running time of \texttt{cons}. Half of the cases the list will have even length \rightarrow we stop after 1 step. Half of the remaining cases will have a length of the form $4n + 1 \rightarrow$ we stop after 2 steps. Half of the remaining cases will have a length $8n + 3$...

\[
\text{avg. cons time} = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \ldots < \sum_{i=1}^{\infty} \frac{i}{2^i} = 2
\]

\texttt{lookup} k should be on average $O(\log(k))$

(What about amortized running time? Tricky to analyse in the lazy purely functional setting, I think the same results may be also true for amortized cost...)
Nested leaf n-ary random-access lists

For the n-ary version, we proceed exactly the same way. Consider for example the quaternary ($n = 4$) version:

```haskell
data Seq4 a
  = Nil
  | Zero (Seq (a,a,a,a)) -- digit 0
  | One  a   (Seq (a,a,a,a)) -- digit 1
  | Two  a a (Seq (a,a,a,a)) -- digit 2
  | Three a a a (Seq (a,a,a,a)) -- digit 3

cons :: a -> Seq4 a -> Seq4 a
cons x seq = case seq of
  Nil       -> One  x Nil
  Zero rest -> One  x rest
  One  a rest -> Two x a rest
  Two  a b rest -> Three x a b rest
  Three a a a a rest -> Zero $ cons (x,a,a,a) rest
```
Skew number systems

In the skew n-ary number system, we allow one more digit apart from 0, 1, ..., $n - 1$. We will call this digit n. However, it is allowed to appear at most once, and it must be the first (least significant) non-zero digit.

Example (skew-binary): $1\ 0\ 0\ 1\ 0\ 1\ 1\ 2\ 0\ 0\ 0\ 0$

Incrementation algorithm:

- if there is an n digit, set it to zero and increment the next digit
- otherwise just increment the least significant digit

At most one carry operation! → possible to implement in constant time →
→ this translates to worst-case $O(1)$ cons.
Skew n-ary random-access lists

How many skew numbers are with (at most) k digits?

$$f(k) := \text{number of } k\text{-digit skew } n\text{-ary numbers}$$

$$f(k) = n \cdot f(k-1) + 1 = \sum_{i=0}^{k} n^k$$

It follows (convince yourself) that:

$$\begin{bmatrix} a_k & a_{k-1} & \ldots & a_1 & a_0 \end{bmatrix} \mapsto \sum_{i=0}^{k} a_k \cdot f(k) \in \mathbb{N}$$

Observation: $f(k)$ equals to the number of “full” (data on both the nodes and the leaves) n-ary trees with depth k!

Thus we will store data on both the nodes and the leaves. It’s magic!
Skew \(n \)-ary random-access lists, II.

Observation: \(f(k) \) equals to the number of “full” (data on both the nodes and the leaves) \(n \)-ary trees with depth \(k \! \)!

Thus we will store data on both the nodes and the leaves (this also reduces memory consumption, by the way):

\[
\begin{align*}
(1) & \quad (4) & \quad (13) & \quad (40) \\
0 & \quad 1 & \quad 2 & \quad 3 \\
\end{align*}
\]

\[
1 + 1 + 1 + 1 = 4 \\
4 + 4 + 4 + 1 = 13 \\
13 + 13 + 13 + 1 = 40
\]

Problem: for a truly \(O(1) \) \texttt{cons} implementation, we have to “jump over” the zero digits. For \textit{nested} trees, this becomes somewhat tricky. Should be easy with dependent types, but how to convince GHC to accept our program?
Memory footprint

Comparison of the (average) memory footprint (with GHC) of some similar data structures, in extra words per element:

<table>
<thead>
<tr>
<th>Data</th>
<th>3</th>
<th>3</th>
<th>2.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data.List</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data.RandomAccessList</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data.Sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data.Vector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random-access lists:

<table>
<thead>
<tr>
<th></th>
<th>leaf naive</th>
<th>leaf clever</th>
<th>skew naive</th>
<th>skew clever</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ternary</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1.666</td>
</tr>
<tr>
<td>quaternary</td>
<td>3.666</td>
<td>1.666</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>$n \to \infty$</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>n-ary</td>
<td>$2 + \frac{n+1}{n-1}$</td>
<td>$\frac{n+1}{n-1}$</td>
<td>3</td>
<td>$\frac{n+2}{n}$</td>
</tr>
</tbody>
</table>
Speed comparison

Libraries compared: Data.Sequence (finger tree), Data.RandomAccessList, and nested leaf- binary/ternary/quaternary

Lookup & cons:

<table>
<thead>
<tr>
<th>Library</th>
<th>Lookup</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>lookup/dseq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lookup/ral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lookup/nl2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lookup/nl3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lookup/nl4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cons/dseq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cons/ral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cons/nl2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cons/nl3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cons/nl4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Update:

<table>
<thead>
<tr>
<th>Library</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>update/dseq</td>
<td></td>
</tr>
<tr>
<td>update/ral</td>
<td></td>
</tr>
<tr>
<td>update/nl2</td>
<td></td>
</tr>
<tr>
<td>update/nl3</td>
<td></td>
</tr>
<tr>
<td>update/nl4</td>
<td></td>
</tr>
</tbody>
</table>