Simple blog engine with shape functors and generic eliminators for ADTs

Andor Penzes

zerobuzz

September 15, 2016
An experiment on a blog engine is complicated enough, to be a real world like problem. It is small enough to code it in a few hours after work.
This will be confusing as the same phenomenon has many names in the literature.

- Generic eliminator
- Eliminator
- Catamorhism
- Initial algebra
- Template function

The full power of the generic eliminators are connected to dependent typed programming.

Haskell is not dependent yet, let’s use a simple approach.
In theory, there is no difference between theory and practice. But, in practice, there is. (Jan L. A. van de Snepscheut)
In theory, there is no difference between theory and practice. But, in practice, there is. (Jan L. A. van de Snepscheut)

This presentation is about the definitions and the practical use of generic eliminators.
-- Abstract deepsense. (Matthias Fishmann)
module Eliminators.Theory where
data List a
 = Empty
 | Cons a (List a)

length :: List a -> Int
length Empty = 0
length (Cons _ xs) = 1 + length xs
For every ADT we can define an algebra based on its structure.
Abstract the recursion

For every ADT we can define an algebra based on its structure.

Eliminator for an ADT captures the structure structure of the ADT, when the ADT is recursive the eliminator is applied for the recursion.
For every ADT we can define an algebra based on its structure.

Eliminator for an ADT captures the structure structure of the ADT, when the ADT is recursive the eliminator is applied for the recursion.

\[
\text{list
delim} :: (b, a \to b \to b) \to \text{List} a \to b
\]
\[
\text{list
delim} (\text{empty}, \text{cons}) \text{Empty} = \text{empty}
\]
\[
\text{list
delim} (\text{empty}, \text{cons}) (\text{Cons} a \text{ as}) =
\]
\[
\text{cons} a (\text{list
delim} (\text{empty}, \text{cons}) \text{as})
\]
Abstract the recursion

For every ADT we can define an algebra based on its structure.

Eliminator for an ADT captures the structure structure of the ADT, when the ADT is recursive the eliminator is applied for the recursion.

\[
\text{list_elim} :: (b, a \rightarrow b \rightarrow b) \rightarrow \text{List} \ a \rightarrow b \\
\text{list_elim} \ (\text{empty}, \text{cons}) \ \text{Empty} = \text{empty} \\
\text{list_elim} \ (\text{empty}, \text{cons}) \ (\text{Cons} \ a \ \text{as}) = \\
\quad \text{cons} \ a \ (\text{list_elim} \ (\text{empty}, \text{cons}) \ \text{as}) \\
\]

\[
\text{length_alg} :: (\text{Int}, a \rightarrow \text{Int} \rightarrow \text{Int}) \\
\text{length_alg} = (0, _ \ n \rightarrow 1 + n) \\
\]

\[
\text{length'} :: \text{List} \ a \rightarrow \text{Int} \\
\text{length'} = \text{list_elim} \ \text{length_alg} \\
\]
Abstract the list shape

Shape functors.

Eliminators for an ADT can be separated into the shape of the ADT and the recursion scheme.

data ListShape a rec
 = EmptyS
 | ConsS a rec
deriving (Show)

newtype Fix f = In { unFix :: f (Fix f) }

type ListF a = Fix (ListShape a)

e = In EmptyS
ae = In (ConsS 1 e)
aae = In (ConsS 2 ae)
Abstract the list shape

listElim :: (b, a -> b -> b) -> ListF a -> b
listElim (empty, cons) (In EmptyS) = empty
listElim (empty, cons) (In (ConsS a s)) =
 cons a (listElim (empty, cons) s)

length’’ = listElim (0, (_ n -> (1 + n)))
Let's rename listElim to listCata as we abstracting away from the value processing.

\[
\text{listCata} :: (\text{ListShape } a \text{ s} \rightarrow \text{s}) \rightarrow \text{ListF } a \rightarrow \text{s}
\]

\[
\text{listCata alg (In EmptyS)} = \text{alg EmptyS}
\]

\[
\text{listCata alg (In (ConsS a s))} = \text{alg (ConsS a (listCata alg s))}
\]

\[
\text{lengthAlg} :: \text{ListShape } a \text{ Int} \rightarrow \text{Int}
\]

\[
\text{lengthAlg EmptyS} = 0
\]

\[
\text{lengthAlg (ConsS } _ \text{n}) = 1 + \text{n}
\]

\[
\text{length’’} = \text{listCata lengthAlg}
\]

Andor Penzes
HaL 2016
instance Functor (ListShape a) where
 fmap f EmptyS = EmptyS
 fmap f (ConsS a s) = ConsS a (f s)
Let’s abstract the shape functor. In Category theory the algebras are defined for functors. Many algebra can be defined for the given functor.

```haskell
-- newtype Fix f = In { unFix :: f (Fix f) }

type Algebra f a = f a -> a

cata :: Functor f => Algebra f s -> Fix f -> s

    cata alg = alg          -- Compute the result from the partials
      . fmap (cata alg)      -- Compute the partial results
      . unFix                -- Step inside

length''' = cata lengthAlg

Catamorphism is a recursion scheme.
```
Factorial?

Catamorphisms are not powerful enough, there is a zoo of morphisms. We need another type of morphism to be able to define the factorial function.

http://hackage.haskell.org/package/fixplate
-- Concrete nonsense.
module Eliminators.Practice where
Find the balance between the abstractions and concreteness.

Real World Development

Andor Penzes

HaL 2016
Real World Development

Find the balance between the abstractions and concreteness.

Real world development usually

- is not too abstract
- uses modular approach
- is powerful enough to cover the problems.
Real World Development

Find the balance between the abstractions and concreteness.

Real world development usually

- is not too abstract
- uses modular approach
- is powerful enough to cover the problems.

Use Fix, Shape functors and cata if your data types are tend to be recursive and there is a high probability of changes

Use Eliminators otherwise.
First and well known lazy generic eliminator in every programming language!

\[
\text{boolElim } t \ f \ e = \text{ if } e \ \text{then } t \ \text{else } f
\]

or

\[
\text{boolElim'} t \ f \ e = \text{ case } e \ \text{of} \\
\text{ True } \rightarrow t \\
\text{ False } \rightarrow f
\]
With Haskell we can create eliminators for every ADT, based on the structure of the ADT. With laziness generic eliminators can serve as template functions for the values we work with.

```haskell
maybeElim n j m = case m of
  Nothing  -> n
  Just x   -> j x

eitherElim l r e = case e of
  Left x  -> l x
  Right y -> r y
```
Composition of eliminators comes from the structural induction on the shape of ADT.

```haskell
compExample =
  eitherElim
    (eitherElim
      (show . (1+))
      ("x=" ++))
    (maybeElim "NaN" (show . floor))
```

Using intendation helps a lot. It is very similar to the pointfree style.
Design recipe

Create an ADT

Create its eliminator based on the structure

Encapsulate this definitions in a module

Sometimes it is useful to add a typed hole, which can carry

out information

Create algebras to define functions with eliminators
Create an ADT
Design recipe

- Create an ADT
- Create its eliminator based on the structure
Design recipe

- Create an ADT
- Create its eliminator based on the structure
- Encapsulate this definitions in a module

Sometimes it is useful to add a typed hole, which can carry out information.

Create algebras to define functions with eliminators.
Design recipe

- Create an ADT
- Create its eliminator based on the structure
- Encapsulate this definitions in a module
- Sometimes it is useful to add a typed hole, which can carry out information
Design recipe

- Create an ADT
- Create its eliminator based on the structure
- Encapsulate this definitions in a module
- Sometimes it is useful to add a typed hole, which can carry out information
- Create algebras to define functions with eliminators
In real world examples the information usually organized in a tree shaped data.
data Entry a = Entry {
 e_hole :: a
 , e_lines :: Pandoc
} deriving (Functor, Eq, Show)

type EntryAlgebra a b = (a -> Pandoc -> b)

data Entry a = Entry {
 _hole :: a
 , _lines :: Pandoc
} deriving (Functor, Eq, Show)

entryElim :: EntryAlgebra a b -> Entry a -> b
entryElim alg (Entry hole lines) = alg hole lines

Type hole in Entry. With a type hole we can express more computational power and can convert our regular data type to a shape functor, and if we need we can use it in Fix computations.
data TopicName a = TopicName {
 tn_hole :: a
 , tn_name :: Pandoc
} deriving (Functor, Eq, Show)

type TopicNameAlgebra a b = (a -> Pandoc -> b)

topicNameElim :: TopicNameAlgebra a b -> TopicName a -> b
topicNameElim alg (TopicName hole name) = alg hole name
data Topic a = Topic {
 t_hole :: a,
 t_topicName :: TopicName a,
 t_entries :: [Entry a]
} deriving (Functor, Eq, Show)
data Topic a = Topic {
 t_hole :: a,
 t_topicName :: TopicName a,
 t_entries :: [Entry a]
} deriving (Functor, Eq, Show)

How to define an eliminator and algebras for Topic?

type TopicAlgebra a t e es p =
 (TopicNameAlgebra a t,
 EntryAlgebra a e,
 ListAlgebra e es,
 a -> t -> es -> p)

topicElim :: TopicAlgebra a t e es p -> Topic a -> p

 topicElim (topicNameAlg, entryAlg, entriesAlg, combine)
 (Topic hole topicName entries)
 = combine
 hole
 (topicNameElim topicNameAlg topicName)
 (listElim_ entriesAlg (entryElim entryAlg <$> entries))
data Blog a = Blog {
 b_hole :: a
 , b_summary :: Pandoc
 , b_topics :: [Topic a]
} deriving (Functor, Eq, Show)

type BlogAlgebra a t e es p bs b =
 (TopicAlgebra a t e es p
 , ListAlgebra p bs
 , a -> Pandoc -> bs -> b)

blogElim :: BlogAlgebra a t e es p bs b -> Blog a -> b
blogElim (topic, topicList, combine)
 (Blog hole summary topics)
 = combine
 hole
 summary
 (listElim_ topicList (topicElim topic <$> topics))
renderPages :: FilePath -> (NavPath -> Html -> Html) -> Blog FileProperties -> IO ()
renderPages outDir frame = blogElim render where
 render = (topic, sequence_, topicList)
 topic = (topicName, entry, entryList, topicNameEntryList)

entry fp pandoc = do
 writeFile (outDir </> (markdownPathToHTMLPathFP fp))
 (renderHtml . frame NavBackward $ pandoc2html pandoc)
 return (fp, firstHeader pandoc)

entryList = (return [], \x xs -> (:) <$> x <*> xs)
topicList _ _ ts = ts
sequence_ = (return (), (>>)) -- Monoid instance of monads
topicName fp pandoc = do
 createDirectoryIfMissing True $ outDir </> markdownPathToHTMLDir fp
 return (\content -> writeFile
 (outDir </> (markdownPathToHTMLPathFP fp))
 (renderHtml $ frame NavInPlace content)
 , pandoc
)

topicNameEntryList _ topicName entryList = do
 (topicPage, pandoc) <- topicName
 headers <- entryList
 topicPage $ do -- :: Html
 pandoc2panel pandoc
 topicsList headers
Drawbacks:

If the type is the same in every case eliminators can be easily swapped.

No names of the constructors are given.

Solutions:

Create an ADT for the algebra and name the constructors.

Use the new Symbol types as type parameter to name the different cases.
Drawbacks:

- If the type is the same in every case eliminators can be easily swapped
Drawbacks:

- If the type is the same in every case eliminators can be easily swapped
- No names of the constructors are given
Drawbacks:

- If the type is the same in every case eliminators can be easily swapped
- No names of the constructors are given

Solutions:
Drawbacks:

- If the type is the same in every case eliminators can be easily swapped
- No names of the constructors are given

Solutions:

- Create an ADT for the algebra and name the constructors
Drawbacks:

- If the type is the same in every case eliminators can be easily swapped
- No names of the constructors are given

Solutions:

- Create an ADT for the algebra and name the constructors
- Use the new Symbol types as type parameter to name the different cases
Use named parameters

data Param (n :: Symbol) a = Param a

maybeElimNamed
 :: (Param "nothing" b) -> (Param "just" (a -> b)) -> Maybe a -> b
maybeElimNamed (Param nothing) (Param just) = \case
 Nothing -> nothing
 Just x -> just x

test = maybeElimNamed
 (Param 0 :: Param "nothing" Int)
 (Param (1+) :: Param "just" (Int -> Int))
Connection to lenses

- Lenses are coalgebras, composition works via function composition
- Eliminators use algebras, composition works via tupling
- Eliminators are like universal properties for an ADT
Future work

More...

- Use template haskell to generate eliminators from the ADT
- Use generics-sop library to generate eliminators
- Create a library
Conclusion

- Similar to point free style
- Algorithms are compact, but still understandable
- Composition done by chaining or tupling of algebras

https://github.com/andorp/andorp.github.io/tree/master/haskell