
Simple blog engine with shape functors and
generic eliminators for ADTs

Andor Penzes

zerobuzz

September 15, 2016

Andor Penzes HaL 2016

Introduction

An experiment on a blog engine is complicated enough, to be a
real world like problem. It is small enough to code it in a few hours
after work.

Andor Penzes HaL 2016

Eliminators

This will be confusing as the same phenomenon has many names
in the literature.

Generic eliminator

Eliminator

Catamorhism

Initial algebra

Template function

The full power of the generic eliminators are connected to
dependent typed programming.

Haskell is not dependent yet, let’s use a simple approach.

Andor Penzes HaL 2016

In theory, there is no difference between theory and practice. But,
in practice, there is. (Jan L. A. van de Snepscheut)

This presentation is about the definitions and the practical use of
generic eliminators.

Andor Penzes HaL 2016

In theory, there is no difference between theory and practice. But,
in practice, there is. (Jan L. A. van de Snepscheut)

This presentation is about the definitions and the practical use of
generic eliminators.

Andor Penzes HaL 2016

-- Abstract deepsense. (Matthias Fishmann)

module Eliminators.Theory where

Andor Penzes HaL 2016

Basic example

data List a

= Empty

| Cons a (List a)

length :: List a -> Int

length Empty = 0

length (Cons _ xs) = 1 + length xs

Andor Penzes HaL 2016

Abstract the recursion

For every ADT we can define an algebra based on its structure.

Eliminator for an ADT captures the structure structure of the
ADT, when the ADT is recursive the eliminator is applied for the
recursion.

list_elim :: (b, a -> b -> b) -> List a -> b

list_elim (empty, cons) Empty = empty

list_elim (empty, cons) (Cons a as) =

cons a (list_elim (empty, cons) as)

length_alg :: (Int, a -> Int -> Int)

length_alg = (0, _ n -> 1 + n)

length’ :: List a -> Int

length’ = list_elim length_alg

Andor Penzes HaL 2016

Abstract the recursion

For every ADT we can define an algebra based on its structure.

Eliminator for an ADT captures the structure structure of the
ADT, when the ADT is recursive the eliminator is applied for the
recursion.

list_elim :: (b, a -> b -> b) -> List a -> b

list_elim (empty, cons) Empty = empty

list_elim (empty, cons) (Cons a as) =

cons a (list_elim (empty, cons) as)

length_alg :: (Int, a -> Int -> Int)

length_alg = (0, _ n -> 1 + n)

length’ :: List a -> Int

length’ = list_elim length_alg

Andor Penzes HaL 2016

Abstract the recursion

For every ADT we can define an algebra based on its structure.

Eliminator for an ADT captures the structure structure of the
ADT, when the ADT is recursive the eliminator is applied for the
recursion.

list_elim :: (b, a -> b -> b) -> List a -> b

list_elim (empty, cons) Empty = empty

list_elim (empty, cons) (Cons a as) =

cons a (list_elim (empty, cons) as)

length_alg :: (Int, a -> Int -> Int)

length_alg = (0, _ n -> 1 + n)

length’ :: List a -> Int

length’ = list_elim length_alg

Andor Penzes HaL 2016

Abstract the recursion

For every ADT we can define an algebra based on its structure.

Eliminator for an ADT captures the structure structure of the
ADT, when the ADT is recursive the eliminator is applied for the
recursion.

list_elim :: (b, a -> b -> b) -> List a -> b

list_elim (empty, cons) Empty = empty

list_elim (empty, cons) (Cons a as) =

cons a (list_elim (empty, cons) as)

length_alg :: (Int, a -> Int -> Int)

length_alg = (0, _ n -> 1 + n)

length’ :: List a -> Int

length’ = list_elim length_alg

Andor Penzes HaL 2016

Abstract the list shape

Shape functors.

Eliminators for an ADT can be separated into the shape of the
ADT and the recursion scheme.

data ListShape a rec

= EmptyS

| ConsS a rec

deriving (Show)

newtype Fix f = In { unFix :: f (Fix f) }

type ListF a = Fix (ListShape a)

e = In EmptyS

ae = In (ConsS 1 e)

aae = In (ConsS 2 ae)

Andor Penzes HaL 2016

Abstract the list shape

listElim :: (b, a -> b -> b) -> ListF a -> b

listElim (empty, cons) (In EmptyS) = empty

listElim (empty, cons) (In (ConsS a s)) =

cons a (listElim (empty, cons) s)

length’’ = listElim (0, (_ n -> (1 + n)))

Andor Penzes HaL 2016

Abstract the cases of list shape

Let’s rename listElim to listCata as we abstracting away from the
value processing.

listCata :: (ListShape a s -> s) -> ListF a -> s

listCata alg (In EmptyS) = alg EmptyS

listCata alg (In (ConsS a s)) = alg (ConsS a (listCata alg s))

lengthAlg :: ListShape a Int -> Int

lengthAlg EmptyS = 0

lengthAlg (ConsS _ n) = 1 + n

length’’’ = listCata lengthAlg

Andor Penzes HaL 2016

Shape functor

instance Functor (ListShape a) where

fmap f EmptyS = EmptyS

fmap f (ConsS a s) = ConsS a (f s)

Andor Penzes HaL 2016

Catamorphism

Let’s abstract the shape functor. In Category theory the algebras
are defined for functors. Many algebra can be defined for the given
functor.

-- newtype Fix f = In { unFix :: f (Fix f) }

type Algebra f a = f a -> a

cata :: Functor f => Algebra f s -> Fix f -> s

cata alg = alg -- Compute the result from the partials

. fmap (cata alg) -- Compute the partial results

. unFix -- Step inside

length’’’’ = cata lengthAlg

Catamorphism is a recursion scheme.

Andor Penzes HaL 2016

More than cata

Factorial?

Catamorhisms are not powerfull enough, there is a zoo of
morphisms. We need an another type of morphism to be able to
define the factorial function.

http://hackage.haskell.org/package/fixplate

Andor Penzes HaL 2016

-- Concrete nonsense.

module Eliminators.Practice where

Andor Penzes HaL 2016

Real World Development

Find the balance between the abstractions and concreteness.

Real world development usually

is not too abstract

uses modular approach

is powerful enough to cover the problems.

Use Fix, Shape functors and cata if your data types are tend to be
recursive and there is a high probability of changes

Use Eliminators otherwise.

Andor Penzes HaL 2016

Real World Development

Find the balance between the abstractions and concreteness.

Real world development usually

is not too abstract

uses modular approach

is powerful enough to cover the problems.

Use Fix, Shape functors and cata if your data types are tend to be
recursive and there is a high probability of changes

Use Eliminators otherwise.

Andor Penzes HaL 2016

Real World Development

Find the balance between the abstractions and concreteness.

Real world development usually

is not too abstract

uses modular approach

is powerful enough to cover the problems.

Use Fix, Shape functors and cata if your data types are tend to be
recursive and there is a high probability of changes

Use Eliminators otherwise.

Andor Penzes HaL 2016

The godfather of all eliminators

First and well known lazy generic eliminator in every programming
language!

boolElim t f e = if e then t else f

or

boolElim’ t f e = case e of

True -> t

False -> f

Andor Penzes HaL 2016

More eliminators

With Haskell we can create eliminators for every ADT, based on
the structure of the ADT. With laziness generic eliminators can
serve as template functions for the values we work with.

maybeElim n j m = case m of

Nothing -> n

Just x -> j x

eitherElim l r e = case e of

Left x -> l x

Right y -> r y

Andor Penzes HaL 2016

Composition

Composition of eliminators comes from the structural induction on
the shape of ADT.

compExample =

eitherElim

(eitherElim

(show . (1+))

("x=" ++))

(maybeElim "NaN" (show . floor))

Using intendation helps a lot. It is very similar to the pointfree
style.

Andor Penzes HaL 2016

Design recipe

Create an ADT

Create its eliminator based on the stucture

Encapsulate this definitions in a module

Sometimes it is useful to add a typed hole, which can carry
out information

Create algebras to define functions with eliminators

Andor Penzes HaL 2016

Design recipe

Create an ADT

Create its eliminator based on the stucture

Encapsulate this definitions in a module

Sometimes it is useful to add a typed hole, which can carry
out information

Create algebras to define functions with eliminators

Andor Penzes HaL 2016

Design recipe

Create an ADT

Create its eliminator based on the stucture

Encapsulate this definitions in a module

Sometimes it is useful to add a typed hole, which can carry
out information

Create algebras to define functions with eliminators

Andor Penzes HaL 2016

Design recipe

Create an ADT

Create its eliminator based on the stucture

Encapsulate this definitions in a module

Sometimes it is useful to add a typed hole, which can carry
out information

Create algebras to define functions with eliminators

Andor Penzes HaL 2016

Design recipe

Create an ADT

Create its eliminator based on the stucture

Encapsulate this definitions in a module

Sometimes it is useful to add a typed hole, which can carry
out information

Create algebras to define functions with eliminators

Andor Penzes HaL 2016

Design recipe

Create an ADT

Create its eliminator based on the stucture

Encapsulate this definitions in a module

Sometimes it is useful to add a typed hole, which can carry
out information

Create algebras to define functions with eliminators

Andor Penzes HaL 2016

Real world data

In real world examples the information usualy organized in a tree
shaped data.

Andor Penzes HaL 2016

Entry

data Entry a = Entry {

e_hole :: a

, e_lines :: Pandoc

} deriving (Functor, Eq, Show)

type EntryAlgebra a b = (a -> Pandoc -> b)

entryElim :: EntryAlgebra a b -> Entry a -> b

entryElim alg (Entry hole lines) = alg hole lines

Type hole in Entry. With a type hole we can expres more
computational power and can convert our regular data type to a
shape functor, and if we need we can use it in Fix compuations.

Andor Penzes HaL 2016

TopicName

data TopicName a = TopicName {

tn_hole :: a

, tn_name :: Pandoc

} deriving (Functor, Eq, Show)

type TopicNameAlgebra a b = (a -> Pandoc -> b)

topicNameElim :: TopicNameAlgebra a b -> TopicName a -> b

topicNameElim alg (TopicName hole name) = alg hole name

Andor Penzes HaL 2016

Topic

data Topic a = Topic {

t_hole :: a

, t_topicName :: TopicName a

, t_entries :: [Entry a]

} deriving (Functor, Eq, Show)

How to define an eliminator and algebras for Topic?

type TopicAlgebra a t e es p =

(TopicNameAlgebra a t

, EntryAlgebra a e

, ListAlgebra e es

, a -> t -> es -> p)

topicElim :: TopicAlgebra a t e es p -> Topic a -> p

topicElim (topicNameAlg, entryAlg, entriesAlg, combine)

(Topic hole topicName entries)

= combine

hole

(topicNameElim topicNameAlg topicName)

(listElim_ entriesAlg (entryElim entryAlg <$> entries))

Andor Penzes HaL 2016

Topic

data Topic a = Topic {

t_hole :: a

, t_topicName :: TopicName a

, t_entries :: [Entry a]

} deriving (Functor, Eq, Show)

How to define an eliminator and algebras for Topic?

type TopicAlgebra a t e es p =

(TopicNameAlgebra a t

, EntryAlgebra a e

, ListAlgebra e es

, a -> t -> es -> p)

topicElim :: TopicAlgebra a t e es p -> Topic a -> p

topicElim (topicNameAlg, entryAlg, entriesAlg, combine)

(Topic hole topicName entries)

= combine

hole

(topicNameElim topicNameAlg topicName)

(listElim_ entriesAlg (entryElim entryAlg <$> entries))

Andor Penzes HaL 2016

Blog

data Blog a = Blog {

b_hole :: a

, b_summary :: Pandoc

, b_topics :: [Topic a]

} deriving (Functor, Eq, Show)

type BlogAlgebra a t e es p bs b =

(TopicAlgebra a t e es p

, ListAlgebra p bs

, a -> Pandoc -> bs -> b)

blogElim :: BlogAlgebra a t e es p bs b -> Blog a -> b

blogElim (topic, topicList, combine)

(Blog hole summary topics)

= combine

hole

summary

(listElim_ topicList (topicElim topic <$> topics))

Andor Penzes HaL 2016

Renderer

renderPages :: FilePath -> (NavPath -> Html -> Html)

-> Blog FileProperties -> IO ()

renderPages outDir frame = blogElim render where

render = (topic, sequence_, topicList)

topic = (topicName, entry, entryList, topicNameEntryList)

entry fp pandoc = do

writeFile (outDir </> (markdownPathToHTMLPathFP fp))

(renderHtml . frame NavBackward $ pandoc2html pandoc)

return (fp, firstHeader pandoc)

entryList = (return [], \x xs -> (:) <$> x <*> xs)

topicList _ _ ts = ts

sequence_ = (return (), (>>)) -- Monoid instance of monads

Andor Penzes HaL 2016

Renderer

topicName fp pandoc = do

createDirectoryIfMissing True $ outDir </> markdownPathToHTMLDir fp

return (\content -> writeFile

(outDir </> (markdownPathToHTMLPathFP fp))

(renderHtml $ frame NavInPlace content)

, pandoc

)

topicNameEntryList _ topicName entryList = do

(topicPage, pandoc) <- topicName

headers <- entryList

topicPage $ do -- :: Html

pandoc2panel pandoc

topicsList headers

Andor Penzes HaL 2016

Drawbacks / Solutions

Drawbacks:

If the type is the same in every case eliminators can be easily
swapped

No names of the cunstructors are given

Solutions:

Create an ADT for the algebra and name the constructors

Use the new Symbol types as type parameter to name the
different cases

Andor Penzes HaL 2016

Drawbacks / Solutions

Drawbacks:

If the type is the same in every case eliminators can be easily
swapped

No names of the cunstructors are given

Solutions:

Create an ADT for the algebra and name the constructors

Use the new Symbol types as type parameter to name the
different cases

Andor Penzes HaL 2016

Drawbacks / Solutions

Drawbacks:

If the type is the same in every case eliminators can be easily
swapped

No names of the cunstructors are given

Solutions:

Create an ADT for the algebra and name the constructors

Use the new Symbol types as type parameter to name the
different cases

Andor Penzes HaL 2016

Drawbacks / Solutions

Drawbacks:

If the type is the same in every case eliminators can be easily
swapped

No names of the cunstructors are given

Solutions:

Create an ADT for the algebra and name the constructors

Use the new Symbol types as type parameter to name the
different cases

Andor Penzes HaL 2016

Drawbacks / Solutions

Drawbacks:

If the type is the same in every case eliminators can be easily
swapped

No names of the cunstructors are given

Solutions:

Create an ADT for the algebra and name the constructors

Use the new Symbol types as type parameter to name the
different cases

Andor Penzes HaL 2016

Drawbacks / Solutions

Drawbacks:

If the type is the same in every case eliminators can be easily
swapped

No names of the cunstructors are given

Solutions:

Create an ADT for the algebra and name the constructors

Use the new Symbol types as type parameter to name the
different cases

Andor Penzes HaL 2016

Named parameters

Use named parameters

data Param (n :: Symbol) a = Param a

maybeElimNamed

:: (Param "nothing" b) -> (Param "just" (a -> b)) -> Maybe a -> b

maybeElimNamed (Param nothing) (Param just) = \case

Nothing -> nothing

Just x -> just x

test = maybeElimNamed

(Param 0 :: Param "nothing" Int)

(Param (1+) :: Param "just" (Int -> Int))

Andor Penzes HaL 2016

Lenses

Connection to lenses

Lenses are coalgebras, composition works via function
composition

Eliminators use algebras, composition works via tupling

Eliminators are like universal properties for an ADT

Andor Penzes HaL 2016

Future work

More...

Use template haskell to generate eliminators from the ADT

Use generics-sop library to generate eliminators

Create a library

Andor Penzes HaL 2016

Conclusion

Conclusion

Similar to point free style

Algorithms are compact, but still understandable

Composition done by chaining or tupling of algebras

https://github.com/andorp/andorp.github.io/tree/master/haskell

Andor Penzes HaL 2016

