
Efficient signal processingusing Haskell and LLVM

Efficient signal processing
using Haskell and LLVM

Henning Thielemann

2016-09-15



Efficient signal processingusing Haskell and LLVM

Features

1 Features

2 Discussion



Efficient signal processingusing Haskell and LLVM

Features

Introduction

Warning:

synthesizer-llvm – already fast and feature-rich,
but still pretty low-level.

Nonetheless no need for much LLVM hacking.

http://hackage.haskell.org/package/synthesizer-llvm


Efficient signal processingusing Haskell and LLVM

Features

Signal producers and modifiers

1 Features
Signal producers and modifiers
Causal processes: sharing and feedback
Parameterized code
Sample value types: Stereo sounds, binary logic signals
Frequency filter parameters and different signal rates
Vectorization
Treat arrows like plain functions
Compose music from tones
MIDI control
Integration with ALSA and JACK

2 Discussion



Efficient signal processingusing Haskell and LLVM

Features

Signal producers and modifiers

Signal

modulemodulemodule Synthesizer.LLVM.Simple.Signal

signal simulated by signal generator

compute and emit samples step by step (iterator)

Value FloatFloatFloat ∼ FloatFloatFloat value in LLVM

Signal.T a ∼ [a]

producer:

osciSaw :: FloatFloatFloat -> Signal.T (Value FloatFloatFloat)

modifier:

amplify ::

FloatFloatFloat ->

Signal.T (Value FloatFloatFloat) ->

Signal.T (Value FloatFloatFloat)



Efficient signal processingusing Haskell and LLVM

Features

Signal producers and modifiers

Oscillator

supported waveforms:

Csound: waves made from tables

SuperCollider: specialized oscillator per waveform

synthesizer-llvm: any function as waveform
Synthesizer.LLVM.Wave

band-limited oscillators:

SuperCollider: available

synthesizer-llvm: not available

http://hackage.haskell.org/package/synthesizer-llvm
http://hackage.haskell.org/package/synthesizer-llvm


Efficient signal processingusing Haskell and LLVM

Features

Causal processes: sharing and feedback

1 Features
Signal producers and modifiers
Causal processes: sharing and feedback
Parameterized code
Sample value types: Stereo sounds, binary logic signals
Frequency filter parameters and different signal rates
Vectorization
Treat arrows like plain functions
Compose music from tones
MIDI control
Integration with ALSA and JACK

2 Discussion



Efficient signal processingusing Haskell and LLVM

Features

Causal processes: sharing and feedback

Causal processes

Problems:

letletlet x = Signal.osciSaw freq

ininin x + x

Signal x is computed twice.

amplify ::

FloatFloatFloat ->

Signal.T (Value FloatFloatFloat) ->

Signal.T (Value FloatFloatFloat)

No warranty for usability of amplify in real-time processing.



Efficient signal processingusing Haskell and LLVM

Features

Causal processes: sharing and feedback

Causal processes

Solution: modulemodulemodule Synthesizer.LLVM.Causal.Process

Process.T a b ∼ Signal.T a -> Signal.T b

instanceinstanceinstance Arrow Process.T

warrants causality: never accesses future input values

e.g. reversereversereverse cannot be a Process.T

tailored to real-time processing

allows for sharing

allows for feedback

Example:

amplify ::

FloatFloatFloat ->

Process.T (Value FloatFloatFloat) (Value FloatFloatFloat)



Efficient signal processingusing Haskell and LLVM

Features

Parameterized code

1 Features
Signal producers and modifiers
Causal processes: sharing and feedback
Parameterized code
Sample value types: Stereo sounds, binary logic signals
Frequency filter parameters and different signal rates
Vectorization
Treat arrows like plain functions
Compose music from tones
MIDI control
Integration with ALSA and JACK

2 Discussion



Efficient signal processingusing Haskell and LLVM

Features

Parameterized code

Parameters

Problem:

Test > play (osciSaw (hertz 440))

...

Test > play (osciSaw (hertz 550))

...

Code for osciSaw is compiled twice.

Goal:

compile osciSaw once

add parameters to compiled code



Efficient signal processingusing Haskell and LLVM

Features

Parameterized code

Parameters

Solution:
modulemodulemodule Synthesizer.LLVM.Parameter

modulemodulemodule Synthesizer.LLVM.Parameterized.*

modulemodulemodule Synthesizer.LLVM.CausalParameterized.*

Example:

amplify ::

Param.T p FloatFloatFloat ->

CausalP.T p (Value FloatFloatFloat) (Value FloatFloatFloat)

p: record containing all parameters

Param.T p FloatFloatFloat: selector from record p

arr fstfstfst :: Param.T (FloatFloatFloat, BoolBoolBool) FloatFloatFloat

440 :: Param.T p FloatFloatFloat:
constant 440 folded into code
parameter omitted in low-level parameter structure



Efficient signal processingusing Haskell and LLVM

Features

Parameterized code

Parameters

Example:

Causal.applyStorable

(Causal.amplify (arr ididid))

:: FloatFloatFloat -> SV.Vector FloatFloatFloat ->

SV.Vector FloatFloatFloat



Efficient signal processingusing Haskell and LLVM

Features

Sample value types: Stereo sounds, binary logic signals

1 Features
Signal producers and modifiers
Causal processes: sharing and feedback
Parameterized code
Sample value types: Stereo sounds, binary logic signals
Frequency filter parameters and different signal rates
Vectorization
Treat arrows like plain functions
Compose music from tones
MIDI control
Integration with ALSA and JACK

2 Discussion



Efficient signal processingusing Haskell and LLVM

Features

Sample value types: Stereo sounds, binary logic signals

Rich sample value types

Csound, SuperCollider: Signals of Floats

synthesizer-llvm:

various precisions: FloatFloatFloat, DoubleDoubleDouble

integers (counts, linear congruence noise)
BoolBoolBool (trigger and gate signals)
enumerations (comparison result)
stereo pairs
tuples (combined low-pass, band-pass, high-pass filter)
complex numbers (Fourier coefficients)
arrays (ring buffers, parallel processes)
serial chunks (vectorization)
opaque records (internal filter parameters)
functions (waveform)

http://hackage.haskell.org/package/synthesizer-llvm


Efficient signal processingusing Haskell and LLVM

Features

Sample value types: Stereo sounds, binary logic signals

Stereo

modulemodulemodule Synthesizer.LLVM.Frame.Stereo

modulemodulemodule Synthesizer.LLVM.Frame.StereoInterleaved

amplifyStereo ::

a ->

Causal.T

(Stereo.T (Value a))

(Stereo.T (Value a))

No need to resort to pairs of signals.



Efficient signal processingusing Haskell and LLVM

Features

Sample value types: Stereo sounds, binary logic signals

Ugly:

CausalP.takeWhiletakeWhiletakeWhile

(LLVM.cmp LLVM.CmpGT) threshold

Nice:

CausalPV.takeWhiletakeWhiletakeWhile (%>) threshold

modulemodulemodule Synthesizer.LLVM.Simple.Value

modulemodulemodule Synthesizer.LLVM.Causal.ProcessValue

modulemodulemodule Synthesizer.LLVM.CausalParameterized.ProcessValue



Efficient signal processingusing Haskell and LLVM

Features

Frequency filter parameters and different signal rates

1 Features
Signal producers and modifiers
Causal processes: sharing and feedback
Parameterized code
Sample value types: Stereo sounds, binary logic signals
Frequency filter parameters and different signal rates
Vectorization
Treat arrows like plain functions
Compose music from tones
MIDI control
Integration with ALSA and JACK

2 Discussion



Efficient signal processingusing Haskell and LLVM

Features

Frequency filter parameters and different signal rates

Frequency filter

Problem:

Frequency filters controlled by frequency f , resonance Q

Computing internal filter parameters from f ,Q is expensive,
but filter parameters may not change rapidly

Applying filters is cheap,
but must be performed at audio sample rate

Solutions elsewhere:

Csound, SuperCollider distinguish between:

high audio rate: e.g. 44100 Hz
low control rate: e.g. 4410 Hz
audio rate must be multiple of control rate

ChucK: Update parameters on demand



Efficient signal processingusing Haskell and LLVM

Features

Frequency filter parameters and different signal rates

Coping with internal filter parameters

modulemodulemodule Synthesizer.LLVM.Filter.*

Separate

filter parameter computation,

rate adaption,

filter application

subsumes features of other frameworks

filter parameters: explicit but opaque data type

automatically select filter depending on filter parameter type:
modulemodulemodule Synthesizer.LLVM.Causal.Controlled

dependency this way:

multiple ways to define filter
one way to perform filter



Efficient signal processingusing Haskell and LLVM

Features

Vectorization

1 Features
Signal producers and modifiers
Causal processes: sharing and feedback
Parameterized code
Sample value types: Stereo sounds, binary logic signals
Frequency filter parameters and different signal rates
Vectorization
Treat arrows like plain functions
Compose music from tones
MIDI control
Integration with ALSA and JACK

2 Discussion



Efficient signal processingusing Haskell and LLVM

Features

Vectorization

Vector computation

modern CPUs can perform multiple operations at once,
AVX: 8 FloatFloatFloat multiplications in one instruction

certainly the main way to accelerate code in future processors

utilize vector operations:

LLVM optimizer:
turn scalar into vector operations automatically

custom synthesizer-llvm implementations

LLVM: both generic and processor specific vector instructions

supports non-native vector sizes

LLVM optimizer:

Pro: transparent to synthesizer-llvm API

Con: not allowed to perform certain optimizations

http://hackage.haskell.org/package/synthesizer-llvm
http://hackage.haskell.org/package/synthesizer-llvm


Efficient signal processingusing Haskell and LLVM

Features

Vectorization

Custom vector implementations

possible schemes:

serial: chop signal in chunks of vector size

parallel: compute several equal processes in lock-step

mixed: e.g. serial chunks of stereo signals

pipeline: chain of equal processes

switch between vectorization schemes: expensive
→ stick to one scheme

serial vectorization most flexible
automatically scales to (future) longer vectors



Efficient signal processingusing Haskell and LLVM

Features

Vectorization

Custom vector implementations

serial chunks:
modulemodulemodule Synthesizer.LLVM.Frame.SerialVector

modulemodulemodule Synthesizer.LLVM.Simple.SignalPacked

modulemodulemodule Synthesizer.LLVM.Parameterized.SignalPacked

modulemodulemodule Synthesizer.LLVM.Causal.ProcessPacked

modulemodulemodule Synthesizer.LLVM.Causal.ControlledPacked

modulemodulemodule Synthesizer.LLVM.CausalParameterized.ProcessPacked

modulemodulemodule Synthesizer.LLVM.CausalParameterized.ControlledPacked

parallel: replace Value a by Value (Vector n a)

mixed serial/parallel:
modulemodulemodule Synthesizer.LLVM.Frame.StereoInterleaved

pipeline: Synthesizer.LLVM.Causal.Process.pipeline



Efficient signal processingusing Haskell and LLVM

Features

Treat arrows like plain functions

1 Features
Signal producers and modifiers
Causal processes: sharing and feedback
Parameterized code
Sample value types: Stereo sounds, binary logic signals
Frequency filter parameters and different signal rates
Vectorization
Treat arrows like plain functions
Compose music from tones
MIDI control
Integration with ALSA and JACK

2 Discussion



Efficient signal processingusing Haskell and LLVM

Features

Treat arrows like plain functions

Arrows are cumbersome

Functional:

\x -> letletlet y = lowpass x

ininin mix y (delay y)

Temporary variables for shared results – Wanted!
Arrow combinators:

mix <<< ididid &&& delay <<< lowpass

Too few temporary variables (no x)
Arrow notation:

proc x -> dododo

y <- lowpass -< x

z <- delay -< y

mix -< (y,z)

Too many temporary variables (unnecessary z).



Efficient signal processingusing Haskell and LLVM

Features

Treat arrows like plain functions

Turn Arrows to functions

modulemodulemodule Synthesizer.LLVM.CausalParameterized.Functional

letletlet x = Func.lift $ arr ididid

y = lowpass $& x

ininin mix $& y &|& (delay $& y)

Func.withArgs $ \x ->

letletlet y = lowpass $& x

ininin mix $& y &|& (delay $& y)

Input selector instead of function parameter:
x :: Func.T input (Value FloatFloatFloat)

Observed sharing
y runs only once



Efficient signal processingusing Haskell and LLVM

Features

Compose music from tones

1 Features
Signal producers and modifiers
Causal processes: sharing and feedback
Parameterized code
Sample value types: Stereo sounds, binary logic signals
Frequency filter parameters and different signal rates
Vectorization
Treat arrows like plain functions
Compose music from tones
MIDI control
Integration with ALSA and JACK

2 Discussion



Efficient signal processingusing Haskell and LLVM

Features

Compose music from tones

Compose tones

parameterizable signals

render to StorableVector

overlapping mix of scheduled signals
Synthesizer.LLVM.Storable.Signal.arrange

result: StorableVector
accessible to further processing



Efficient signal processingusing Haskell and LLVM

Features

MIDI control

1 Features
Signal producers and modifiers
Causal processes: sharing and feedback
Parameterized code
Sample value types: Stereo sounds, binary logic signals
Frequency filter parameters and different signal rates
Vectorization
Treat arrows like plain functions
Compose music from tones
MIDI control
Integration with ALSA and JACK

2 Discussion



Efficient signal processingusing Haskell and LLVM

Features

MIDI control

separate MIDI channels

separate command types (note, controller, program change)

separate controllers

convert controller events to audio data
or opaque filter parameters

modulemodulemodule Synthesizer.LLVM.MIDI

modulemodulemodule Synthesizer.LLVM.MIDI.BendModulation



Efficient signal processingusing Haskell and LLVM

Features

Integration with ALSA and JACK

1 Features
Signal producers and modifiers
Causal processes: sharing and feedback
Parameterized code
Sample value types: Stereo sounds, binary logic signals
Frequency filter parameters and different signal rates
Vectorization
Treat arrows like plain functions
Compose music from tones
MIDI control
Integration with ALSA and JACK

2 Discussion



Efficient signal processingusing Haskell and LLVM

Features

Integration with ALSA and JACK

Integration with ALSA and JACK

ALSA:

separate sub-systems for

Audio: ALSA PCM
MIDI: ALSA sequencer

JACK:

call-back design
compatible with Causal.Process

processes chunks of audio and MIDI data

reactive audio programming

Event+Behavior: MIDI events

integration of Event+Behavior with audio



Efficient signal processingusing Haskell and LLVM

Features

Integration with ALSA and JACK

Integration with ALSA and JACK

process data in chunks

CausalParameterized.Process.processIO

modulemodulemodule Synthesizer.LLVM.Server.ALSA

modulemodulemodule Synthesizer.LLVM.Server.JACK



Efficient signal processingusing Haskell and LLVM

Discussion

1 Features

2 Discussion



Efficient signal processingusing Haskell and LLVM

Discussion

Signal processing EDSL in Haskell

An EDSL in Haskell as cumbersome and unsafe as C –
any advantage over C?
Advantages:

automatic adaption to instruction set extensions
(e.g. SSE, AVX, AVX2)

put much processing in one loop

does not increase speed,
but allows for short-time feedback

generation of efficient signal processing including short-time
feedback at runtime, e.g. also at user-request. User may

enter custom process graphs,
load example graphs from disk,
send it via MIDI-SYSEX to your software synthesizer.



Efficient signal processingusing Haskell and LLVM

Discussion

Comparison with Csound, SuperCollider etc.

Advantages of established software synthesizers:

lots of predefined effects and examples

Disadvantage: Also need sophisticated Haskell interfaces.

Advantages of Haskell EDSL:

exchange audio data between LLVM synthesizer and other
Haskell code in memory

smaller, more basic building blocks,
due to richer type system and short-time feedback

thus, easier to extend



Efficient signal processingusing Haskell and LLVM

Discussion

Short-time feedback

Short-time feedback is a pretty invasive feature.
The fine print is:

short-time feedback makes processing unstable,
hard to predict,
may not be reproducible at different sampling rates

conflicts with vectorization,
machine vectors are the new processing chunks



Efficient signal processingusing Haskell and LLVM

Discussion

LLVM

Pros:

JIT

multiple processor back-ends

vectorization

optimizations

Cons:

global variables
(e.g. no connection between Module and Builder)

destructive updates (e.g. in optimization)

Phi-Nodes instead of Basic-Block-Arguments
low responsibility:

frequent changes, hardly documented
little reactions to questions
bugs are quickly introduced but require years to be fixed
(e.g. inttopointer, LLVMRunFunction)



Efficient signal processingusing Haskell and LLVM

Discussion

To Do

vectorization without vector in API types

vectorized Signal and Process type
custom LLVM vectorization pass

storable-vector with typed chunk size

signal with sample rate as type

dimensional discrete time

test mode for LLVM monad
for virtual downgrade of the machine

better integration with
a reactive Haskell programming framework



Efficient signal processingusing Haskell and LLVM

Discussion

Remaining technical difficulties

Optimizations interfere badly with call-backs
Call-backs are needed for

allocation and deallocation,
reading from lazy data structures.

Crashes are hard to debug


	Features
	Signal producers and modifiers
	Causal processes: sharing and feedback
	Parameterized code
	Sample value types: Stereo sounds, binary logic signals
	Frequency filter parameters and different signal rates
	Vectorization
	Treat arrows like plain functions
	Compose music from tones
	MIDI control
	Integration with ALSA and JACK

	Discussion

