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Introduction

Warning:

synthesizer-llvm – already fast and feature-rich,
but still pretty low-level.

Nonetheless no need for much LLVM hacking.

http://hackage.haskell.org/package/synthesizer-llvm
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Signal producers and modifiers

Signal

modulemodulemodule Synthesizer.LLVM.Simple.Signal

signal simulated by signal generator

compute and emit samples step by step (iterator)

Value FloatFloatFloat ∼ FloatFloatFloat value in LLVM

Signal.T a ∼ [a]

producer:

osciSaw :: FloatFloatFloat -> Signal.T (Value FloatFloatFloat)

modifier:

amplify ::

FloatFloatFloat ->

Signal.T (Value FloatFloatFloat) ->

Signal.T (Value FloatFloatFloat)
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Signal producers and modifiers

Oscillator

supported waveforms:

Csound: waves made from tables

SuperCollider: specialized oscillator per waveform

synthesizer-llvm: any function as waveform
Synthesizer.LLVM.Wave

band-limited oscillators:

SuperCollider: available

synthesizer-llvm: not available

http://hackage.haskell.org/package/synthesizer-llvm
http://hackage.haskell.org/package/synthesizer-llvm
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Causal processes: sharing and feedback

Causal processes

Problems:

letletlet x = Signal.osciSaw freq

ininin x + x

Signal x is computed twice.

amplify ::

FloatFloatFloat ->

Signal.T (Value FloatFloatFloat) ->

Signal.T (Value FloatFloatFloat)

No warranty for usability of amplify in real-time processing.
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Causal processes: sharing and feedback

Causal processes

Solution: modulemodulemodule Synthesizer.LLVM.Causal.Process

Process.T a b ∼ Signal.T a -> Signal.T b

instanceinstanceinstance Arrow Process.T

warrants causality: never accesses future input values

e.g. reversereversereverse cannot be a Process.T

tailored to real-time processing

allows for sharing

allows for feedback

Example:

amplify ::

FloatFloatFloat ->

Process.T (Value FloatFloatFloat) (Value FloatFloatFloat)
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Parameters

Problem:

Test > play (osciSaw (hertz 440))

...

Test > play (osciSaw (hertz 550))

...

Code for osciSaw is compiled twice.

Goal:

compile osciSaw once

add parameters to compiled code



Efficient signal processingusing Haskell and LLVM

Features

Parameterized code

Parameters

Solution:
modulemodulemodule Synthesizer.LLVM.Parameter

modulemodulemodule Synthesizer.LLVM.Parameterized.*

modulemodulemodule Synthesizer.LLVM.CausalParameterized.*

Example:

amplify ::

Param.T p FloatFloatFloat ->

CausalP.T p (Value FloatFloatFloat) (Value FloatFloatFloat)

p: record containing all parameters

Param.T p FloatFloatFloat: selector from record p

arr fstfstfst :: Param.T (FloatFloatFloat, BoolBoolBool) FloatFloatFloat

440 :: Param.T p FloatFloatFloat:
constant 440 folded into code
parameter omitted in low-level parameter structure
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Parameterized code

Parameters

Example:

Causal.applyStorable

(Causal.amplify (arr ididid))

:: FloatFloatFloat -> SV.Vector FloatFloatFloat ->

SV.Vector FloatFloatFloat
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Sample value types: Stereo sounds, binary logic signals

Rich sample value types

Csound, SuperCollider: Signals of Floats

synthesizer-llvm:

various precisions: FloatFloatFloat, DoubleDoubleDouble

integers (counts, linear congruence noise)
BoolBoolBool (trigger and gate signals)
enumerations (comparison result)
stereo pairs
tuples (combined low-pass, band-pass, high-pass filter)
complex numbers (Fourier coefficients)
arrays (ring buffers, parallel processes)
serial chunks (vectorization)
opaque records (internal filter parameters)
functions (waveform)

http://hackage.haskell.org/package/synthesizer-llvm
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Stereo

modulemodulemodule Synthesizer.LLVM.Frame.Stereo

modulemodulemodule Synthesizer.LLVM.Frame.StereoInterleaved

amplifyStereo ::

a ->

Causal.T

(Stereo.T (Value a))

(Stereo.T (Value a))

No need to resort to pairs of signals.
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Ugly:

CausalP.takeWhiletakeWhiletakeWhile

(LLVM.cmp LLVM.CmpGT) threshold

Nice:

CausalPV.takeWhiletakeWhiletakeWhile (%>) threshold

modulemodulemodule Synthesizer.LLVM.Simple.Value

modulemodulemodule Synthesizer.LLVM.Causal.ProcessValue

modulemodulemodule Synthesizer.LLVM.CausalParameterized.ProcessValue
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Frequency filter

Problem:

Frequency filters controlled by frequency f , resonance Q

Computing internal filter parameters from f ,Q is expensive,
but filter parameters may not change rapidly

Applying filters is cheap,
but must be performed at audio sample rate

Solutions elsewhere:

Csound, SuperCollider distinguish between:

high audio rate: e.g. 44100 Hz
low control rate: e.g. 4410 Hz
audio rate must be multiple of control rate

ChucK: Update parameters on demand
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Coping with internal filter parameters

modulemodulemodule Synthesizer.LLVM.Filter.*

Separate

filter parameter computation,

rate adaption,

filter application

subsumes features of other frameworks

filter parameters: explicit but opaque data type

automatically select filter depending on filter parameter type:
modulemodulemodule Synthesizer.LLVM.Causal.Controlled

dependency this way:

multiple ways to define filter
one way to perform filter
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Vectorization

Vector computation

modern CPUs can perform multiple operations at once,
AVX: 8 FloatFloatFloat multiplications in one instruction

certainly the main way to accelerate code in future processors

utilize vector operations:

LLVM optimizer:
turn scalar into vector operations automatically

custom synthesizer-llvm implementations

LLVM: both generic and processor specific vector instructions

supports non-native vector sizes

LLVM optimizer:

Pro: transparent to synthesizer-llvm API

Con: not allowed to perform certain optimizations

http://hackage.haskell.org/package/synthesizer-llvm
http://hackage.haskell.org/package/synthesizer-llvm
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Vectorization

Custom vector implementations

possible schemes:

serial: chop signal in chunks of vector size

parallel: compute several equal processes in lock-step

mixed: e.g. serial chunks of stereo signals

pipeline: chain of equal processes

switch between vectorization schemes: expensive
→ stick to one scheme

serial vectorization most flexible
automatically scales to (future) longer vectors
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Vectorization

Custom vector implementations

serial chunks:
modulemodulemodule Synthesizer.LLVM.Frame.SerialVector

modulemodulemodule Synthesizer.LLVM.Simple.SignalPacked

modulemodulemodule Synthesizer.LLVM.Parameterized.SignalPacked

modulemodulemodule Synthesizer.LLVM.Causal.ProcessPacked

modulemodulemodule Synthesizer.LLVM.Causal.ControlledPacked

modulemodulemodule Synthesizer.LLVM.CausalParameterized.ProcessPacked

modulemodulemodule Synthesizer.LLVM.CausalParameterized.ControlledPacked

parallel: replace Value a by Value (Vector n a)

mixed serial/parallel:
modulemodulemodule Synthesizer.LLVM.Frame.StereoInterleaved

pipeline: Synthesizer.LLVM.Causal.Process.pipeline
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Treat arrows like plain functions

Arrows are cumbersome

Functional:

\x -> letletlet y = lowpass x

ininin mix y (delay y)

Temporary variables for shared results – Wanted!
Arrow combinators:

mix <<< ididid &&& delay <<< lowpass

Too few temporary variables (no x)
Arrow notation:

proc x -> dododo

y <- lowpass -< x

z <- delay -< y

mix -< (y,z)

Too many temporary variables (unnecessary z).
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Treat arrows like plain functions

Turn Arrows to functions

modulemodulemodule Synthesizer.LLVM.CausalParameterized.Functional

letletlet x = Func.lift $ arr ididid

y = lowpass $& x

ininin mix $& y &|& (delay $& y)

Func.withArgs $ \x ->

letletlet y = lowpass $& x

ininin mix $& y &|& (delay $& y)

Input selector instead of function parameter:
x :: Func.T input (Value FloatFloatFloat)

Observed sharing
y runs only once
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Compose tones

parameterizable signals

render to StorableVector

overlapping mix of scheduled signals
Synthesizer.LLVM.Storable.Signal.arrange

result: StorableVector
accessible to further processing
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MIDI control

separate MIDI channels

separate command types (note, controller, program change)

separate controllers

convert controller events to audio data
or opaque filter parameters

modulemodulemodule Synthesizer.LLVM.MIDI

modulemodulemodule Synthesizer.LLVM.MIDI.BendModulation
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Integration with ALSA and JACK

ALSA:

separate sub-systems for

Audio: ALSA PCM
MIDI: ALSA sequencer

JACK:

call-back design
compatible with Causal.Process

processes chunks of audio and MIDI data

reactive audio programming

Event+Behavior: MIDI events

integration of Event+Behavior with audio



Efficient signal processingusing Haskell and LLVM

Features

Integration with ALSA and JACK

Integration with ALSA and JACK

process data in chunks

CausalParameterized.Process.processIO

modulemodulemodule Synthesizer.LLVM.Server.ALSA

modulemodulemodule Synthesizer.LLVM.Server.JACK
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Signal processing EDSL in Haskell

An EDSL in Haskell as cumbersome and unsafe as C –
any advantage over C?
Advantages:

automatic adaption to instruction set extensions
(e.g. SSE, AVX, AVX2)

put much processing in one loop

does not increase speed,
but allows for short-time feedback

generation of efficient signal processing including short-time
feedback at runtime, e.g. also at user-request. User may

enter custom process graphs,
load example graphs from disk,
send it via MIDI-SYSEX to your software synthesizer.
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Comparison with Csound, SuperCollider etc.

Advantages of established software synthesizers:

lots of predefined effects and examples

Disadvantage: Also need sophisticated Haskell interfaces.

Advantages of Haskell EDSL:

exchange audio data between LLVM synthesizer and other
Haskell code in memory

smaller, more basic building blocks,
due to richer type system and short-time feedback

thus, easier to extend
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Short-time feedback

Short-time feedback is a pretty invasive feature.
The fine print is:

short-time feedback makes processing unstable,
hard to predict,
may not be reproducible at different sampling rates

conflicts with vectorization,
machine vectors are the new processing chunks
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LLVM

Pros:

JIT

multiple processor back-ends

vectorization

optimizations

Cons:

global variables
(e.g. no connection between Module and Builder)

destructive updates (e.g. in optimization)

Phi-Nodes instead of Basic-Block-Arguments
low responsibility:

frequent changes, hardly documented
little reactions to questions
bugs are quickly introduced but require years to be fixed
(e.g. inttopointer, LLVMRunFunction)
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To Do

vectorization without vector in API types

vectorized Signal and Process type
custom LLVM vectorization pass

storable-vector with typed chunk size

signal with sample rate as type

dimensional discrete time

test mode for LLVM monad
for virtual downgrade of the machine

better integration with
a reactive Haskell programming framework
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Remaining technical difficulties

Optimizations interfere badly with call-backs
Call-backs are needed for

allocation and deallocation,
reading from lazy data structures.

Crashes are hard to debug
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